Optimal Fusion of Multiresolution Information for Soft Sensor Development, Process Monitoring and Model-Based Estimation
Acronym: MR2BEST
Reference: PTDC/QEQ-EPS/1323/2014
Funding: FCT, PT2020, FEDER
Duration: 15/06/2016 to 15/12/2019
Principal Investigator: Marco S. Reis
Project overview
Process Industries are generating data with a variety of structures that are not handled properly by current approaches for process monitoring, control and optimization. In particular, current methodologies rely heavily on the availability of data at a single resolution and, most often, also at a single acquisition rate. In short terms, resolution is a measure of the degree of localization of the information about a given quantity, over a domain of the relevant independent variables (time or space). For instance, some variables represent instantaneous values from the process (i.e., averages over a very short period of time), while others consist of averages over several minutes, hours, or even days; still others can be measurements representative from a lot produced during the last hour, or from raw-material being fed to the process sometimes during more than 20 days (such as wood ships in the pulp & paper industry). These variables carry information with different time localizations, i.e., at distinct resolutions in time. However, the common tacit assumption is that all process data are available at the same resolution, usually with high localization in the time domain around the sampling instants (which should, furthermore, be equally spaced). Analyzing modern process databases, one can easily verify that this assumption is frequently not met, meaning that these databases present, in general, a multiresolution data structure. However, to the best of our present knowledge, there are no solutions available for handling multiresolution data, even for the critical low level tasks, such as process monitoring and control, the only exception being a methodology proposed by the PI in 2006 (Reis & Saraiva, 2006c). As referred in this publication, even the so called multiscale approaches assume the presence of data at a single resolution, a fact that is often overlooked. A similar situation is found in the strategic higher level task of process optimization. Therefore, in this project, we set the goal of developing the conceptual background and theory for multiresolution and multirate approaches in the context of the following process systems engineering (PSE) activities: soft sensors for dynamic stationary (continuous) and non-stationary (batch) processes (project task 1), process monitoring for non-stationary (batch) systems (project task 2) and, finally, mechanistic modelling of processes with multiresolution processing units and the development of suitable optimal estimation tools (project task 3).
Project outcomes
Articles and Book Chapters
- Rendall, R., B. Lu, I. Castillo, S.-T. Chin, L. H. Chiang, M.S. Reis, A Unifying and Integrated Framework for Feature Oriented Analysis of Batch Processes. Industrial & Engineering Chemistry Research. (2017). 56(30), p. 8590-8605.
- Reis, M.S., G. Gins, Industrial Process Monitoring in the Big Data/Industry 4.0 Era: From Detection, to Diagnosis, to Prognosis. Processes. 5(3), 35, (2017), p.1-16.
- Rato, T.J., M.S. Reis, Improved Fault Diagnosis in Online Process Monitoring of Complex Networked Processes: a Data-Driven Approach. in Computer Aided Chemical Engineering, A. Espuña, M. Graells, and L. Puigjaner, Editors. (2017), Elsevier. p. 1681-1686.
- Campos, M., R. Sousa, A.C. Pereira, M.S. Reis, Advanced Predictive Methods for Wine Age Prediction: Part II - A Comparison Study of Multiblock Regression Approaches. Talanta. 171 (2017), p. 132-142.
- Rendall, R., A.C. Pereira, M.S. Reis, Advanced Predictive Methods for Wine Age Prediction: Part I - A Comparison Study of Single-Block Regression Approaches based on Variable Selection, Penalized Regression, Latent Variables and Tree-based Ensemble Methods. Talanta. 171 (2017), p. 341-350.
- Rato, T.J., M.S. Reis, Multiresolution Soft Sensors: A New Class of Model Structures for Handling Multiresolution Data. Industrial & Engineering Chemistry Research. 56(13) (2017), p. 3640-3654.
- Rato, T.J., M.S. Reis, Markovian and Non-Markovian Sensitivity Enhancing Transformations for Process Monitoring. Chemical Engineering Science. 163 (2017), p. 223-233.
- Rendall, R. and M.S. Reis, Which regression method to use? Making informed decisions in “data-rich/knowledge poor” scenarios – The Predictive Analytics Comparison framework (PAC). Chemometrics and Intelligent Laboratory Systems. 181 (2018), p. 52-63.
- Rato, T.J. and M.S. Reis, Optimal selection of time resolution for batch data analysis. Part I: Predictive modeling. AIChE Journal. 64 (2018), p. 3923-3933.
- Reis, M.S., R.S. Kenett, Assessing the Value of Information of Data-Centric Activities in the Chemical Processing Industry 4.0. AIChE Journal. 64 (2018), p. 3868-3881.
- Rato, T.J. and M.S. Reis, Building Optimal Multiresolution Soft Sensors for Continuous Processes. Industrial & Engineering Chemistry Research. 57 (2018), p. 9750-9765.
- Rato, T.J., R. Rendall, V. Gomes, P.M. Saraiva, and M.S. Reis, A Systematic Methodology for Comparing Batch Process Monitoring Methods: Part II—Assessing Detection Speed. Industrial & Engineering Chemistry Research. 57(15) (2018), p. 5338-5350.
- Campos, M.P., R. Sousa, M.S. Reis, Establishing the Optimal Blocks’ Order in SO-PLS: Stepwise SO-PLS and Alternative Formulations. Journal of Chemometrics. 32 (2018), p. e3032.
- Geert, G., J. Van Impe, M.S. Reis, Finding the optimal time resolution for batch-end quality prediction: MRQP – a framework for Multi-Resolution Quality Prediction. Chemometrics and Intelligent Laboratory Systems. 172 (2018), p. 150-158.
- Santos, C.P., T.J. Rato, and M.S. Reis, Design of Experiments: A Comparison Study from the Non-Expert User’s Perspective. Journal of Chemometrics. (2018), p. e3087.
- Rato, T.J. and M.S. Reis, Optimal fusion of industrial data streams with different granularities. Computers & Chemical Engineering. 130 (2019), p. 106564.
- Rato, T.J. and M.S. Reis, SS-DAC: A systematic framework for selecting the best modeling approach and pre-processing for spectroscopic data. Computers & Chemical Engineering. 128 (2019), p. 437-449.
- Rato, T.J. and M.S. Reis, Multiresolution interval partial least squares: A framework for waveband selection and resolution optimization. Chemometrics and Intelligent Laboratory Systems. 186 (2019), p. 41-54.
- Reis, M.S., Multiscale and Multi-granularity Process Analytics: A Review. Processes. 7 (2) (2019), p. 61
- Rendall, R., L.H. Chiang, M.S. Reis, Data-driven Methods for Batch Data Analysis – A Critical Overview and Mapping on the Complexity Scale. Computers & Chemical Engineering. 124 (2019), p. 1-13.
- Reis, M.S., G. Gins, and T.J. Rato, Incorporation of process-specific structure in statistical process monitoring: A review. Journal of Quality Technology. (2019), p. 1-15.
- Reis, M.S. and T.J. Rato, An Advanced Data-Centric Multi-Granularity Platform for Industrial Data Analysis, in Computer Aided Chemical Engineering, A.A. Kiss, et al., Editors. 2019, Elsevier. p. 1225-1230.
Articles and Book Chapters under Submission
- Rato, T.J. and M.S. Reis, An Integrated Multiresolution Framework for Quality Prediction and Process Monitoring in Batch Processes. (Submitted to Journal of Manufacturing Systems on 20/05/2019; currently under revision).
- Rato, T.J., D. Neves, A. Antunes and M.S. Reis, A systematic PAT Soft Sensor screening and development methodology for predicting free fatty acids in industrial biodiesel production. (Submitted to Fuel on 23/12/2019; currently under revision).
Communications in International Conferences
- Reis, M.S., Advances in Batch Data Analysis. Seminário apresentado na conferência “AIChE Spring Meeting”, realizada em San Antonio (EUA), entre 26 a 30 de março de 2017.
- Reis, M.S., Predictive Modeling with High-Dimensional Industrial Data, Apresentação oral em formato de seminário apresentada na conferência “JDS 2017 – 49èmes Journées de Statistique”, realizada em Avignon (França), entre 20 de maio e 2 de junho de 2017.
- Reis, M.S., On the importance of residual analysis in the implementation of PCA and PLS, Comunicação apresentada no formato de poster no “JMP Discovery Summit”, realizado em Praga (República Checa), entre 21 e 23 de março de 2017.
- Gins, G.; J. Van Impe, M.S. Reis, M.R.Q.P.: Prediction of Final Batch Quality Using a Multi-Resolution Framework, Comunicação oral apresentada no congresso “2016 AICHE Annual Meeting”, realizado em San Franciso (CA, EUA), entre 13 e 18 de novembro de 2016.
- Rendall, R., B. Lu, I. Castillo, S.-T.-Chin, L.H. Chiang, M.S. Reis, Parsimonious Modeling Approaches for Batch Process Analysis, Comunicação oral apresentada no congresso “2016 AICHE Annual Meeting”, realizado em San Franciso (CA, EUA), entre 13 e 18 de novembro de 2016.
- Reis, M.S., Structured Approaches for High-Dimensional Predictive Modeling, Comunicação oral apresentada na conferência “SIS2017 - Statistics and Data Science: New Challenges, New Generations”, realizada em Florença (Itália), entre 28 e 30 de junho de 2017.
- Rendall, R., B. Lu, I. Castillo, S.-T.-Chin, L.H. Chiang, M.S. Reis, Profile-driven Features for Offline Quality Prediction in Batch Processes. Comunicação apresentada no formato de poster no congresso “ESCAPE-27, European Symposyum on Computer Aided Process Engineering”, realizado em Barcelona (Espanha), entre 1 e 5 de outubro de 2017.
- Reis, M.S., R.S. Kenett, On the Use of Simulators for Teaching Statistical Methods. Comunicação oral apresentada no congresso “ENBIS16 – 16th Annual ENBIS Conference”, realizado em Sheffield (UK), entre 11 e 15 de setembro de 2016.
- Rato, T.J., M.S. Reis, Markovian and Non-Markovian Sensitivity Enhancing Transformations for Process Monitoring. Comunicação oral apresentada no congresso “ENBIS16 – 16th Annual ENBIS Conference”, realizado em Sheffield (UK), entre 11 e 15 de setembro de 2016.
- Rato, T.J. and M.S. Reis. Improved Fault Diagnosis in Online Process Monitoring of Complex Networked Processes: a Data-Driven Approach. Comunicação oral apresentada no congresso “27th European Symposium on Computer Aided Process Engineering”, realizado em Barcelona (Espanha), entre 1 e 5 de Outubro de 2017.
- Rato, T.J. and M.S. Reis. A Multiresolution Framework for Building Industrial Soft Sensors. Comunicação oral apresentada no congresso “ENBIS18 – 18th Annual ENBIS Conference”, realizado em Nancy (França), entre 2 e 6 de setembro de 2018.
- Reis. M.S., A Systematic Framework for Assessing the Quality of Information in Data-Driven Applications for the Industry 4.0. Comunicação oral apresentada no congresso “ADCHEM 2018, 10th IFAC Sumposium on Advanced Control of Chemical Processes ”, realizado em Shenyang (China), entre 25 e 27 de julho de 2018. (Inclui artigo publicado nos proceedings do congresso).
- Reis. M.S., T.J. Rato, Multiresolution Analytics for Large Scale Industrial Processes. Comunicação oral apresentada no congresso “ADCHEM 2018, 10th IFAC Sumposium on Advanced Control of Chemical Processes ”, realizado em Shenyang (China), entre 25 e 27 de julho de 2018. (Inclui artigo publicado nos proceedings do congresso).
- Reis, M.S., Incorporating Systems Structure in Data-Driven High-Dimensional Predictive Modeling. Comunicação oral apresentada no congresso “ESCAPE-28, European Symposyum on Computer Aided Process Engineering”, realizado em Graz (Áustria), entre 10 e 13 de junho de 2018.
- Reis, M.S., Exploring the Latent Variable Space of a Multiresponse DOE to Optimize Solid Phase Microextraction (SPME): Case study - Quantification of Volatile Fatty Acids in Wines. Comunicação oral apresentada no congresso “ENBIS Spring Meeting on Design of Experiments for Quality of Products and Sustainability in Agri-Food Systems”, realizado em Florença (Itália), entre 4 e 6 de junho de 2018.
- Reis, M.S., Process Analytics for Quality Improvement. Palestra realizada por convite no congresso internacional da European Organization for Quality (EOQ) 2019, realizado em Lisboa, entre 23 e 24 de outubro de 2019.
- Reis, M.S., Industrial Data Science for Quality Improvement. Palestra realizada por convite na 17th Workshop on Quality Improvement Methods (Dortmund, Alemanha) entre 14 e 15 de junho de 2019.
- Reis, M.S., Modern Approaches to Industrial Process Monitoring. Comunicação oral apresentada no congresso “ENBIS19 – 19th Annual ENBIS Conference”, realizado em Budapeste (Hungria), entre 2 e 4 de setembro de 2019.
- Reis, M.S., T.J. Rato, An Advanced Data-Centric Multi-Granularity Platform for Industrial Data Analysis. Comunicação oral apresentada no congresso “ESCAPE-29, European Symposyum on Computer Aided Process Engineering”, realizado em Eindhoven (Holanda), entre 16 e 19 de junho de 2019.
- Reis, M.S., Structured data-driven approaches for process monitoring and predictive analytics. Palestra realizada por convite na Hybrid Modeling Summer School, que teve lugar na Universidade Nova de Lisboa, no dia 27 de setembro de 2019.
Software
- Multiresolution Soft Sensors (MR-SS)
- Multiresolution Kalman Filter (MR-KF)
- Multiresolution Empirical Models for Continuous Processes (MR-EMC)
- Multiresolution Models for Batch Processes (MR-PLS)
- Multiresolution Batch Process Monitoring (MR-BPM)
- Multiresolution interval Partial Least Squares (MR-iPLS)
- Soft Sensor Development, Assessment and Comparison (SS-DAC)
- Integrated package for Multiresolution Modelling